

MTC2 *R7* Multi-purpose winding testers

There is a SCHLEICH for that!

Winding testers

PUSHING. PRECISION. FURTHER. The next level of surge testing!

With the MTC2 *R7*, SCHLEICH has redefined speed and precision in surge and partial discharge testing – no other test device offers greater performance and versatility.

The MTC2 *R7* is the high-end device for testing all types of coils, stators, armatures and winding goods. Thanks to modular configuration and extensibility, fully automated, comprehensive testing of all types of winding goods is finally becoming a reality.

The integration of so many different test methods in one device is unparalleled. The MTC2 *R7* offers a clear, straightforward display of the tests and the intuitive operating concept simplifies the daily testing schedule.

State-of-the-art hardware technologies paired with cutting-edge .NET Core software are utilized. This increases the accuracy of the individual test methods and the measuring speed substantially.

More than 35 years of experience, extensive know-how and innovative technological advancements are the foundation for the latest generation of our surge voltage testers.

- > Surge voltage up to 50 kV
- > Testing of motors and generators up to 500 MW
- > 2000 A surge current
- > 125 joules surge energy
- > Rise time up to 60 ns
- > Automatic test method switch-over
- > Patented evaluation methods
- > High-speed measurement cycles

SCHLEICH PATENT NO. 1

The surge voltage test can be performed with a pulse frequency of up to 50 Hz. The time required to measure the partial discharge inception voltage can thus be reduced by up to 75 %. This results in a significantly shorter overall test duration and allows for reduced cycle times in automated applications.

SCHLEICH-PATENT NO. 2

The SCHLEICH "Peak-to-Peak" method for the detection of voltage-dependent winding faults has been completely revised and allows for highly sensitive fault detection even on coils with a very large number of windings, which are connected in series or parallel. Fault analysis on very large devices under test as well as motor repair applications areconsiderably simplified and the time required for troubleshooting is reduced to a minimum.

The test methods

The MTC2 *R7* combines all test methods in one device. This gives you a tool that can be used to test winding goods for all possible faults.

By combining the versatile test methods with our patented and award-winning innovations, the quality of your products and services is ensured.

1 Surge voltage test

The unique surge voltage test is used to inspect the insulation within a winding. It is perfectly suited for testing winding faults and phase-to-phase faults as well as many other winding characteristics. In addition, insulation problems relating to the laminated core can also be tested.

2 Partial discharge test with surge voltage

The partial discharge test is used to evaluate and test the insulation system between the phases and/or to the laminated core. The partial discharge test is of particular significance for motors that are operated using frequency converters.

3 Insulation resistance test

The insulation resistance between the phases and/or to the laminated core must be equal to or greater than the given minimum value.

- PI/DAR
- Step voltage test

4 Resistance test

When testing the winding resistance using the 4-wire method, the winding resistance must be within a specified tolerance range. The MTC2 *R7* compensates the influence of temperature on the measurement result.

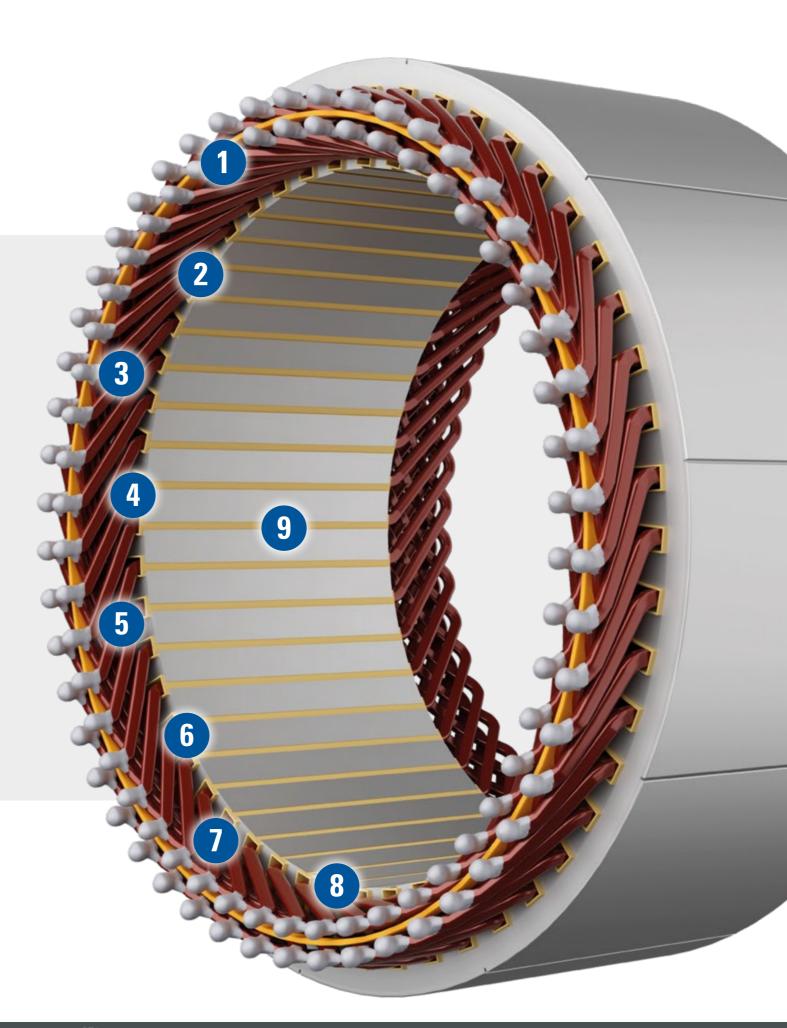
5 Inductance & capacity test

Inductance and capacitance measurement which can be switched to the measurement connections fully automatically.

6 High voltage test AC

High voltage AC ensures the dielectric strength between the phases and/or the laminated core in accordance with applicable standards.

1 High voltage test DC


Dielectric strength test with HV DC for inspection between phases and/or to the laminated core.

8 Partial discharge test at high voltage AC

The partial discharge test is used to evaluate the insulation system between phases and/or to the laminated core. Defects such as a wire touching the laminated core can be found by this method.

9 Sense of rotation test

The MTC2 *R7* supplies the stator with three-phase current. Sensors measure the rotating field contact-free and detect faulty circuits.

Range of applications

The MTC2 R7 was designed for a wide range of applications and can be precisely tailored to your needs thanks to a large number of configurable options. You get exactly the test device that fits your day-to-day requirements perfectly.

MTC2 R7

• All-purpose • Convenient: All connections

SHOCK PROTECTION INSIDE

MTC2 *R7* 19" rack mount version

• 19" installation device

• All connections on the rear side

MTC2 *R7* desktop device

- Robust carrying handles
- on the sides
- All connections on the rear side

6

Laboratory and type testing Research and development

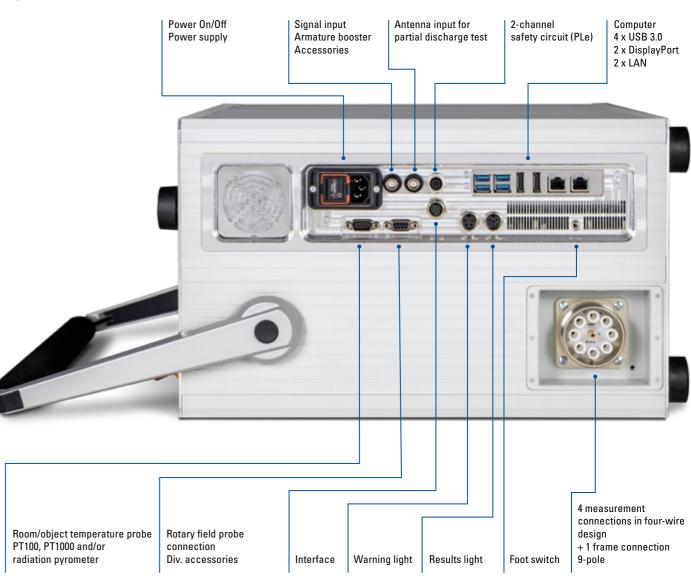
MTC2 R7

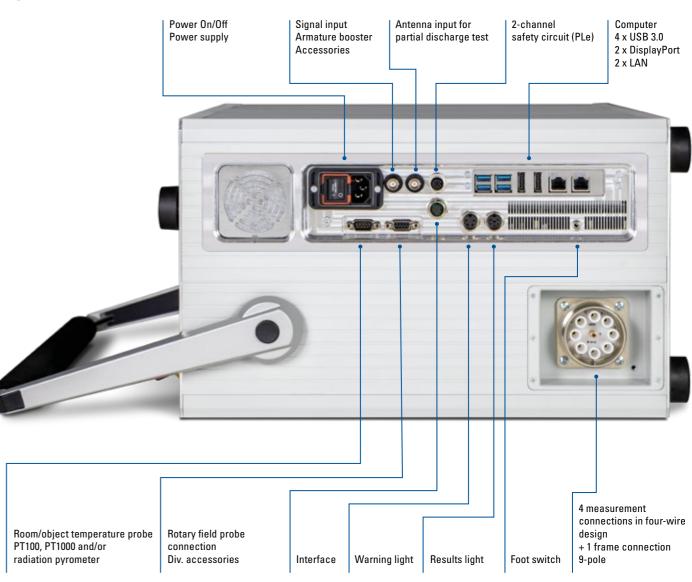
- All-purpose
- Convenient: All connections on the right side

MTC2 R7 desktop device

- Robust carrying handles on the sides
- All connections on the rear side

The side connection panel


The MTC2 R7 6 kV, 12 kV and 15 kV


All components are installed in a custom-made, robust industrial housing. The precision measurement technology in the housing is additionally protected against shocks and vibrations through shock absorbers.

The MTC2 *R7* adapts to your needs - whether it is in the workshop on the floor or the workbench, in manufacturing, in laboratories or for outdoor applications. We have designed special housing options for different areas of application

A test device can be as good as it is - it must fit into an established infrastructure and extend and refine existing possibilities. For this reason, the discreetly recessed connection panel of the MTC2 R7 base model has been placed on the side to make it easily accessible. Whether you operate the device on a table or standing on the floor, all connections are conveniently within reach at all times.

The measurement connection options

MTC2 R76 kV • Pluggable 6 kV test leads

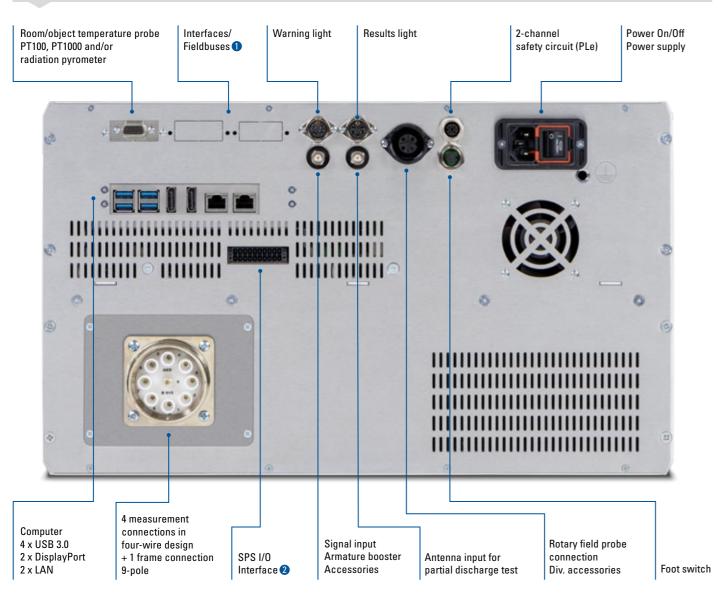
• 4 mm mating connector for alligator clips and Kelvin clamps

MTC2 R7 12 kV and 15 kV

- Pluggable 12 kV and 15 kV test lead set
- Robust industrial connector

Desktop and 19" rack mount device

6 kV, 12 kV and 15 kV


For the desktop and 19" rack mount devices, all connections are on the rear panel. This makes it easy and convenient to integrate the MTC2 R7 into a 19" rack.

For remote control, these devices are by default equipped with an additional PLC I/O interface. Furthermore, they can be upgraded with additional interfaces and fieldbuses.

The rear connection panel

The measurement connection options

Pluggable test leads | 6 kV

Robust industrial connector | 6 kV

1 Interfaces and fieldbuses

The logos shown are registered trademarks of the respective owners. |* optional

2 SPS I/O interface

Outputs: GO, NOGO, test in progress, ready status and 8 configurable outputs Start and 4 configurable inputs Inputs:

Pluggable test lead set | 12 kV & 15 kV

The MTC2 R7 up to 50 kV

25 kV, 30 kV, 40 kV and 50 kV

The MTC2 R7 with 25 kV, 30 kV, 40 kV and 50 kV surge voltage is the test device for stators, motors and generators that are operated with high voltage.

The test device is installed in a sturdy, robust housing with wheels. Additional shock absorbers in the housing protect the precision measurement technology against impacts and strong vibrations. The large castor wheels ensure excellent maneuverability even on rough surfaces.

R7

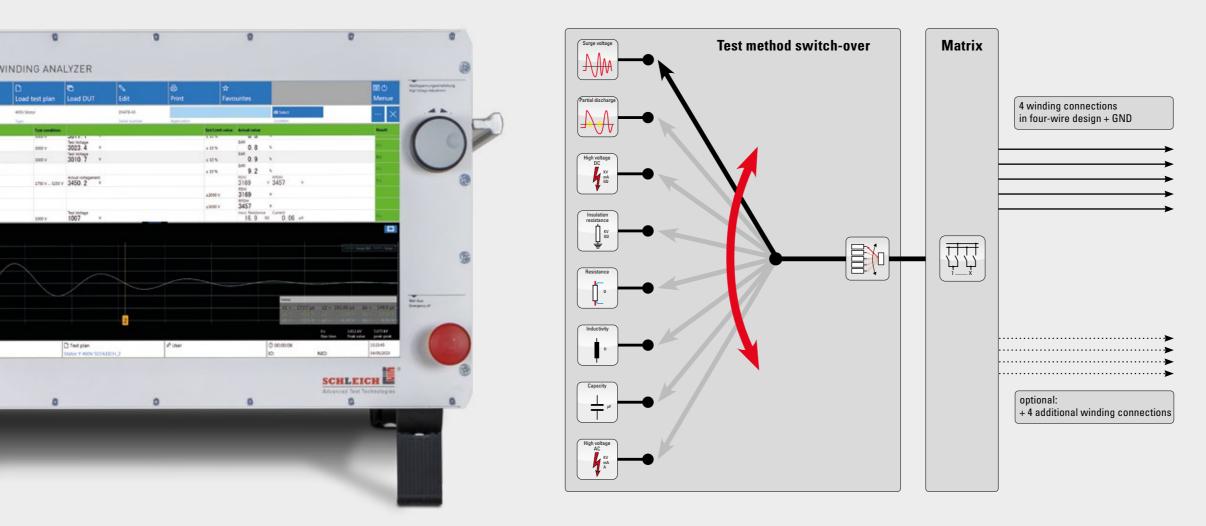
SCHLEICH

Thanks to a large, adjustable monitor, the stand-alone device with keyboard and mouse can be operated comfortably and ergonomically in any situation.

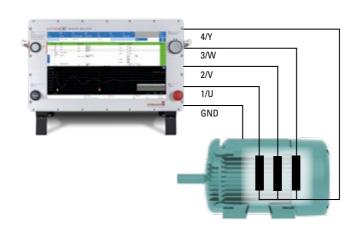
The entire test sequence - including inductance and capacitance measurement - is fully automatic. The built-in test method switchover in the MTC2 *R7* switches the individual tests to the predefined winding connections

The MTC2 *R7* is equipped with two winding connections (HV+ and HV-) and one body connection as standard. This means that both moulded coils and complete stator windings can be tested. Optionally, we offer the extension to three winding connections (U, V, W and body).

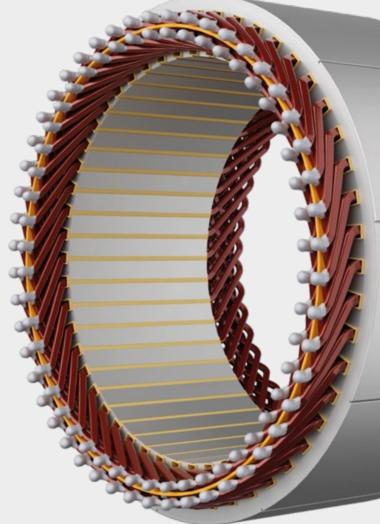
All test connections are accessible on the back of the device through a high-voltage-resistant industrial plug.


> 2 or 3 winding connections (+ frame) > Internal test method switch-over > Fully automatic test sequence incl. LCR measurement

Adjustable monitor Ergonomic height surface for keyboard and mouse Sturdy handle for pushing and maneuvering Convenient: The rear-mounted winding reel for the measuring leads and the easily accessible storage space for accessories such as Kelvin clamps, foot switches, etc.


Large castor wheels, 360° rotatable

The test method switch-over

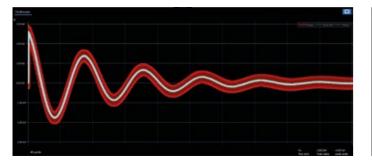

To save time, all connections of the device under test can be plugged using a contacting adapter. The test device then performs the scheduled tests fully automatically without the need for manual intervention. This is made possible by the SCHLEICH-typical automatic test method switch-over.

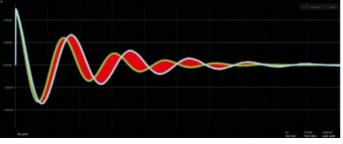
Our test method switch-over ensures fast and automatic switching between the different test methods. Because the voltage differences between the test methods can be immense, reliability is the top priority for switch-overs. A resistance test with 3 V is switched to the device under test just as reliably as a high voltage test with 15 kV. Without compromise! For test devices with multiple connections, it is more cost-effective to simultaneously connect all terminals of the device under test to the MTC2 *R7*. The test device then automatically performs all tests between all connections. This procedure reduces the required cycle rate and thus the cost of a test. We achieve the switch-over between the different connections by utilizing flexible switch-over matrixes.

s re fo O F fr h

We provide the right relay matrix for almost any task. Matrixes differ in the number of connections and the level of the test voltage to be switched. A matrix must be able to switch 15 kV just as safely and reliably as signals in the millivolt range. This is precisely what our engineers have developed the matrixes for. Matrixes are designed for four-wire applications. The MTC2 *R7* has 4 connection terminals. Optionally, an extension to 8 terminals is available.

For switching and matrixes, we only use high-quality components from our own production or from well-known manufacturers that have been tried and tested thousands of times.

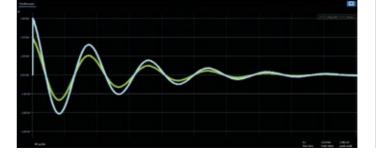

The surge voltage test


For precision fanatics: Even the smallest faults do not go unnoticed by the MTC2 R7. With the elaborate variety of outstanding evaluation methods, that can be combined as required, you can realize the 360° analysis of your device under test. In combination with state-of-the-art hardware for signal acquisition, SCHLEICH offers an exceptionally detailed and very accurate fault analysis. As a result, misinterpretations are reduced to a minimum.

The parameterization to the signals to be evaluated is executed virtually fully automatically. The test device independently selects the most favorable settings for the signal in order to achieve maximum sensitivity. Furthermore, the MTC2 R7 is equipped with

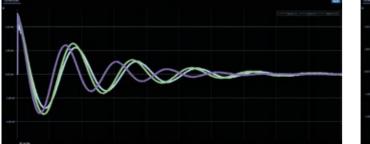
automatic voltage correction. The test voltage is always adjusted optimally, depending on the device under test. This makes fault diagnosis much easier, allowing you to draw qualified and routine conclusions about the condition of your motors very quickly.

The assessment is either based on a reference signal stored previously, on an automatic comparison of all three phases against each other, or is carried out using the new, patented peak-to-peak method.



Tolerance band

The tolerance band is one of the more straightforward evaluation methods in which an envelope curve is wrapped around the signal. The surge wave must be within a defined tolerance band.


Error area EAR

The error area is the difference in area between two signals (surge waves). The surface difference between the reference surge wave and the currently measured surge wave is determined automatically and the deviation is displayed in %.

Correlation | Patented evaluation method

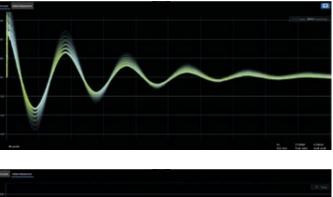
The correlation between the reference surge wave and the currently measured surge wave is automatically determined and the difference is displayed in %.

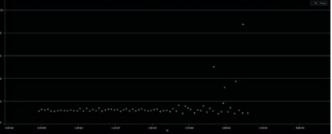
Phase comparison

Phase comparison automatically compares all three phases of a motor and presents them in a diagram. This makes it possible to determine and evaluate symmetry directly. This method is usually applied in motor repair.

Reference comparison

Comparison to a reference is possible when a "good" device under test has been previously recorded. This method is typically used in production.


Surae	voltage	test


Model MTC2 R7	6 kV	12 kV	15 kV	
Test voltage	200 V - 6 kV	500 V - 12 kV	500 V - 15 kV	
Surge capacity 100 nF*	Yes 1,8 J	Yes 7,2 J	Yes 11,25 J	
Surge capacity 200 nF	Optional 3,6 J	Optional 14,4 J	Optional 22,5 J	
Automatic switch-over	Yes	Yes	Yes	

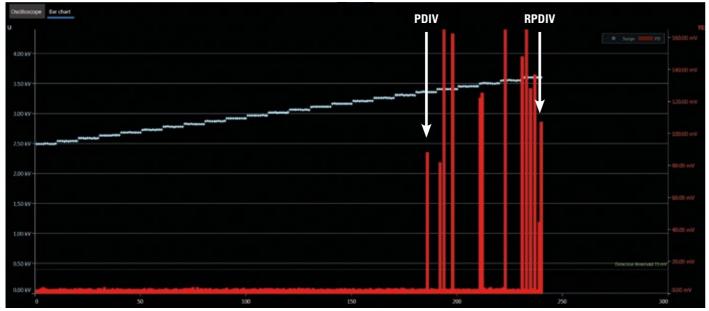
*With optional surge current boost

- > 125 joules surge energy
 > 2000 A surge current
 > Rise time up to 60 ns

- > Patented evaluation methods
- Pulse repetition rate up to 50 Hz

Peak-to-Peak | Patented evaluation method

The peak-to-peak method increases the test voltage step by step. If there is an increased deviation from one step to the next, the test is stopped. The deviation from step to step is displayed in %.


The partial discharge test in accordance with IEC 61934 and DIN EN 60034-18-41

Optional extension

The partial discharge test is used to check the winding quality of winding goods. The test can be performed in conjunction with both the high voltage test (sine wave) and the surge voltage test. Essentially, the aim is to detect quality defects in windings that cannot be detected with the standard high voltage test or even the surge voltage test alone.

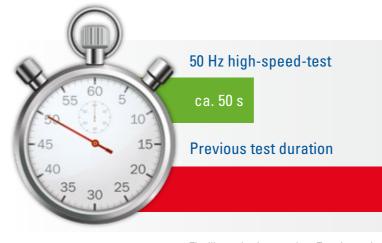
Coupling technology in combination with high-frequency filter technology makes the system highly resistant to interference. It is therefore ideally suited for field operation or in manufacturing applications.

Automatic run of the standard-compliant PD test

The test is carried out either manually or fully automatically. In manual mode, the user increases the voltage while simultaneously monitoring the partial discharge signal.

Automatic operation allows all three phases to be analyzed fully automatically via a test sequence. The following values are evaluated for each phase:

- PDIV (inception voltage)
- PDEV (extinction voltage)
- RPDIV (repetitive inception voltage)
- RPDEV (repetitive extinction voltage)

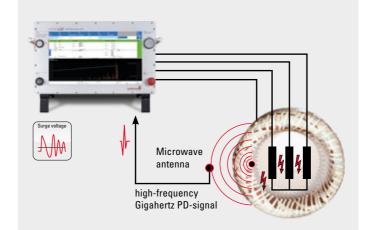

It is not necessary to run the entire ramp. If a quick distinction needs to be made between GO and NOGO in production, the patented 50 Hz high-speed test can be carried out as an option. Alternatively, a fixed test voltage can be used.

Surge voltage pulse with 150 ns rise time and PD effects

Determination of PDIV, RPDIV, RPDEV and PDEV > Partial discharge test up to 15 kV > Uniquely fast test method

The partial discharge test – *now up to 75 % faster!*

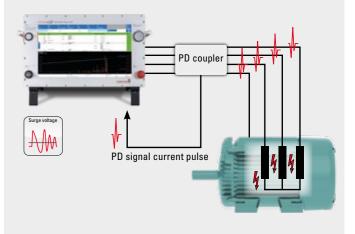
The illustration is exemplary. Test time reduction depends on the test settings!


The combination of these two measurement methods is unique worldwide

The partial discharge measurement (filtering and analysis) is fully integrated in the MTC2 R7. Only the decoupling (measurement) of the actual partial discharge signal takes place outside the device. This is essential in order to optimally adapt to the respective measurement conditions.

Partial discharge test on an open stator winding

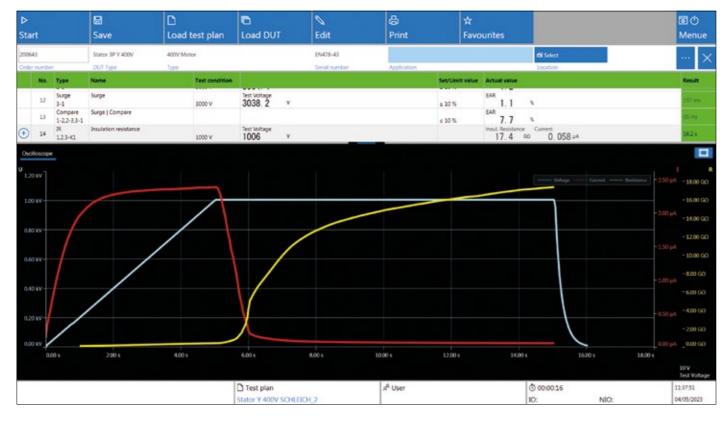
The partial discharge measurement on an open stator winding is realized by means of a highly sensitive measuring antenna, which is placed in the device under test or in its direct vicinity.


Measurements on a fully assembled motor cannot be made with an antenna, since the high-frequency signals are being shielded by the sealed motor housing. In such cases, measurements are made using a special coupler which is looped into the measuring leads.

Both the antenna and the special coupler can be connected to the MTC2 R7 as required.

ca. 218 s

Partial discharge test on an assembled motor

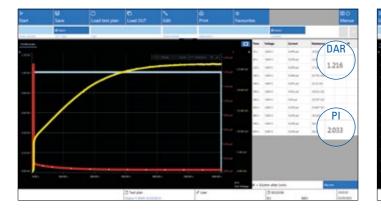

The insulation resistance test

The insulation resistance test integrated in the basic device was specifically designed for testing electric drives. Conveniently, the test voltage is automatically switched to the test lead, which is also in use for surge voltage and resistance testing. Switching over the test leads between measurements is not necessary. The switch-over is fully automatic up to a test voltage of 50 kV.

The software offers preconfigured sequences for PI, DAR, high voltage DC, MegaOhm and step voltage testing. In combination with the new fully automatic ramp time determination, handling has been simplified considerably. To configure the test device in the ideal way for special applications, all parameters can also be adjusted individually.

This includes, among others, the following functions:

- Separate current limit values during ramp phase and test phase
- Contact check via minimum current monitoring
- Temperature compensation of the insulation resistance according to IEEE Std 43

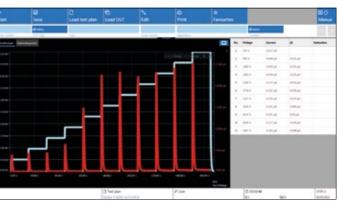

Insulation resistance test with ramp

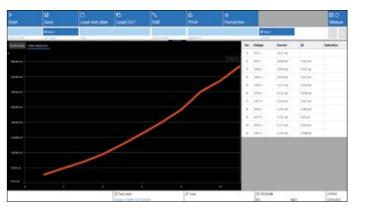
As a rule, the ramp time is defined and specified manually for each individual device under test. However, it must be ensured that maximum charging currents are not exceeded.

The MTC2 *R7* determines the shortest ramp time using the automatic charging current determination in the initial phase of the ramp function. This feature is included in every device.

Nevertheless, it is still possible to set custom parameters for the ramp function. To do this, the ramp duration is set and the maximum permissible charging current is set as the evaluation criterion.

- Automatic charging current detection for minimum ramp time
- Adjustable ramp and test time
- Graphical representation of current, voltage and insulation resistance in a diagram
- Discharge after the test is displayed and logged


PI DAR test


- Logging of the measurement every 60 s
- The first two readings are recorded at an interval of 30 s
- Display of the measurement both in graphical and table form

Insulation	resistance	test
moulution	1001010100	1001

Modell MTC2 R7	6 kV/12 kV/15 kV
Test voltage	200 V - max. voltage
Measurement range	100 kΩ - 500 GΩ
Automatic switch-over	Yes

- > High voltage DC up to 50 kV
 > PI | DAR | step voltage
 > Up to 500 GΩ (optional up to 1 TΩ)

Step voltage test

- In combination with PI/DAR test
- Standard-compliant evaluation of the current values at the end of each individual step
- · Display of the measurement both in graphical and table form

The resistance test

⊳ Start			뭅 Save	D Load test plan	C Load DUT	№ Edit	급 Print	☆ Favo	ourites	2.1	回 ① Menue
00643			Stator 3P Y 400V	400V Motor		EN478-43			#i Select		×
Jeder ra	10	042.0	DUT Type	Туря		Serial number	Application	Sec. Sec.	Location		
	NO.	Type	Name	Test condition	8			Set/Limit value			Result
	0	Temp	Temperature					0 °C 100 °C	27 °C		352 ma
	1	R 1-2	Resistance		27.02 °C			67.5 m0 82.5.	Resistance compensated 20 °C 75, 66 =0		501 ms
	2	R 2-8	Resistance		Temperature 27.02 °C			675 mD - 825	Resistance compensated 20 °C	B	340 mit
	3	R 3-1	Resistance		Temperature 27.02 °C			67.5 mQ 82.5.	Resistance compensated 20 °C		340 ms
	4	Scatter R 1-2,2-3,3-1	Resistance Unbalance					12%	Max. Unbalance 0. 3 %		0.4
Ð	5	L 1-2	Inductance						1. 285 =H 411. 688 =0		2.3 s
Ð	6	L 2-3	Inductance						1. 27 mH 407, 448 mD		2.3 x
Ð	7	L 3-1	Inductance						Inductance Impedanz 1. 268 = 406. 759 =□		234
	8	Scatter [L 1-2,2-3,3-1	Inductance Unbalance					£2%	Max. Unbalance 0.8 %		D K
	9	C 123-KL	Capacitance					4.68 nF 5.72 nf	Capacitance 5. 265 n#		37.6
Oscillo	scope										
											400 A
1.00 V										nd	- 80.00 mO
0.60 V											-60.00 mO
0.40 V											-2.00 A -40.00 mO
0.29 V	-										1.00 A -20.00 mO
0.00 V			5.00 ms	100.00 ms	150.00 ms	200.00 ms		250.00 ms	300.00 ms	350.00 ms	0.00 A 0.00 EO
					Test plan		a ^A User		3 00:00:16		11:39:26
					Stator Y 400V SCHLE	ICH_2			10:	NIO:	04/05/2023

The MTC2 *R7* comes equipped with the resistance test from the base model onwards. This makes it possible to test phase resistances, temperature sensors (NTCs, PTCs and KTYs) and single coils.

It is not necessary to switch the test leads to perform the resistance test. The test is performed immediately and fully automatically via the test leads already connected to the device under test. This is possible thanks to the unique built-in test method switch-over of the MTC2 *R7*.

Room temperature compensation

- Temperature sensor connection directly on the device
- Connectable sensors:
- Room temperature sensor
- Object temperature sensor
- Pyrometer
- Hygrometer and barometer
- Three independent input signals, each with 0 10 V or 4 20 mA
- Measuring range 0 100 °C (32 212 °F)
- Adjustable reference temperature
- Fully automatic compensation of resistance values for copper, aluminium and temperature sensors

Resistance test

6 kV/12 kV/15 kV
0 KV/12 KV/15 KV
1 mΩ - 999 kΩ
1 μΩ
Yes

High-precision measurements in four-wire technology

- **)** From 1 m Ω to 1 M Ω
- > Fully automatic temperature compensation
- > Temperature sensor, hygro- and barometer can be connected directly

The inductance and capacitance test Optional extension to the resistance test

The use of a capacitance measuring bridge is a thing of the past. Use the optional measuring bridge integrated in the MTC2 *R7* to measure inductances, impedances and capacitances with high precision.

The following evaluation options are available:

- Comparison of the actual value to a specified target value
- Determination of the symmetry (spread) of all three phases

⊳ Star	t		딦 Save	D Load test plan	C Load DUT	№ Edit	읍 Print	☆ Favi	ourites		团 ① Menue
20064	3		Stator 3P Y 400V	400V Motor		EN478-43			til Select		×
Inder	numbe	042.0	DUT Type	Type Test condition		Serial number	Application	for the local data	Location .		Result
		Type Temp	Temperature	Fest congroup				Securities	Temperatur		-
	0	11						0 °C 100 °C	27 ^{vc}		352 mb
	1	R 1-2	Resistance		27.02 °C			67.5 mQ 82.5.	Resistance compensated 20 °C 		501 ms
	2	R 2-8	Resistance		Temperature 27.02 °C			675 m0 _ 825	Resistance compensated 20 °C		340 mm
	3	R	Resistance		Temperature			67.3 ML2 - 62.3	Resistance compensated 20 °C		MO eta
	-	3-1 Scatter J.R	Resistance Unbalance		27.02 °C			67.5 mΩ 82.5.			340 80
	4	1-2,2-3,3-1	vesistance (uncarance					\$2%	0.3 1		10 s.
Ð	5	L 1-2	Inductance						Inductance Impedanz 1, 285 == 411, 688 =0	2	2.3 s
Ð	6	L 2-3	Inductance						Inductance Impedant 1, 27 #H 407, 448 #0		2.1 +
	-	2-3 L	Inductance						Inductance Impedang	L	
Ð	7	1-1							1. 268 = 406. 759 =		2.3-1
	8	Scatter L 1-2,2-3,3-1	Inductance Unbalance					\$2%	Max. Unbalance 0, 8 %		D s
	9	C 123-KI	Capacitance					4.68 nF 5.72 n	# 5, 265 n#	C	3.7 4
								4.00 10 11 2.72 1	0.200		_
Osat	cscope	-									
											400 A
1.00									- Vilagi -	Garrent Resistance	80.00 mO
0.80											-60.00 mO
0.50											-2.00 A -40.00 mO
0.40	v-										-
0.20											1.00 A - 20.00 HO
0.00	v		100 ms	100.00 ms	150.00 ms	200.00 ms		250.00 ms	300.00 ers	350.00 ms	Cre 000 A 000
					Test plan		a ^A User		(\$ 00:00:16		11:39:26
					Stator Y 400V SCHLE	KH 2			10:	NIO:	04/05/2023

- > High-precision measurements in four-wire technology
- > Fully automatic test method switch-over
- > From 0,1 µH to 500 mH
- **>** From 1 nF to 100 µF

Inductance and capacitance test

Model MTC2 R7

6 kV/12 kV/15 kV Version "RLC"

Aeasurement range L	1 μH - 500 mH
Resolution L	0,1 μH
Aeasurement frequency L	50/60 Hz*
Aeasurement range C	1 nF - 100 μF
Resolution C	0,1 nF
Aeasurement frequency C	4 kHz*
Automatic switch-over	Yes

* Further measurement frequencies optional

The high voltage test AC Optional extension

Integration of the high voltage test AC into the MTC2 *R7* with automatic and immediate switch-over to the measurement connections.

Reconnecting the test leads is not necessary. The test is conducted fully automatically via the test leads already connected to the device under test.

This extension is only available in the 19" or desktop version due to the embedding of the high voltage test. The size of the device increases to 10 HU as a result.

High voltage test AC	
Test voltage	up to 6 kV
Test current	max. 100 mA
Quick shutdown	adjustable
Part number MTC2 R76 kV	4023207
Part number MTC2 R7 12 kV	4023207
Part number MTC2 R7 15 kV	4023569

Rotary field test Optional extension

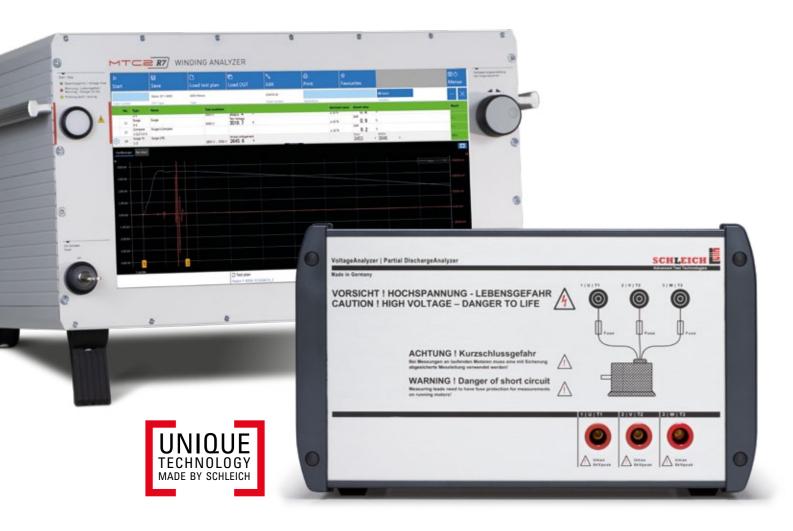
The rotary field test serves to measure and evaluate the rotary field of a stator. The test is performed contactless by means of a rotary-field probe, which is inserted into the stator or attached to a DUT holder.

The rotary field is created by a connected current-limited low-voltage rotary field, which simulates the 3-phase supply of the motor. With this test, coil-connection errors in production can be detected before the motor is assembled.



 Image: Start
 Save
 Image: Sav

- > Standard-compliant high voltage test
- > Fully electronically controlled
- 6 kV @ 100 mA, 200 mA I,


Rotary field probe positioned in a stator

읍 Print		☆ Fav	orites			國 🔿 Menu
0-2365-1		Wat	erpump 1	🖬 Select		×
Order numb	er	4005	cation	Location		
	Set/Limit	alue	Actual value			Result
	\$5%		Inductance 6.062 Inductance 6.047 Max. Deviation 0.2 Capacitance 10.347 measured direc right	International In		23 s 23 s 2 m 27 s 352 ms 204 ms 204 ms 212 ms 203 ms
.00 °			400,00 *		500.00*	61* Prace shaft
^e User adn	ninistration			3 00:04:47		14:28:37 26/02/2024

- > Contactless rotary field test
- > Wear- and maintenance-free
- > Short-circuit-proof
- > Also suitable for single-phase motors

VoltageAnalyzer

Optional extension

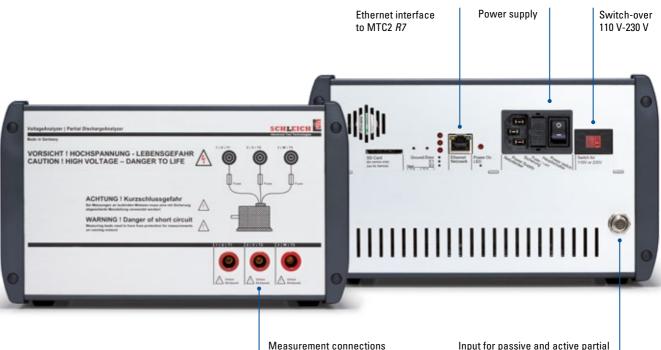
- Precise voltage measurement at winding connections
- > Fully automatic switch-over
- > Potential-free voltage measurement
- > Standard-compliant measurement in accordance with DIN EN 60034-18-41:2021

The VoltageAnalyzer is designed to measure surge voltage signals directly at the motor winding. The frequency response covers the range from DC to very high pulse frequencies in the MHz range. This makes the VoltageAnalyzer the perfect choice for high-precision surge voltage and partial discharge measurements.

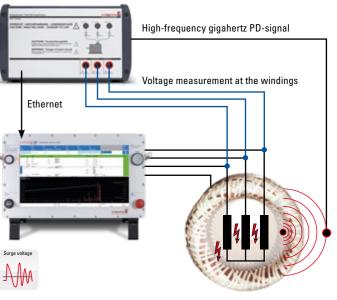
It measures the voltages and voltage peaks directly where they occur. For instance, this could be inside the motor at the motor terminal board or directly at the winding connections.

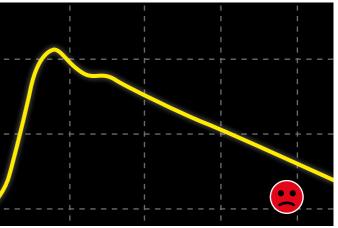
Voltage measurement during surge voltage and partial discharge

In some cases, the voltage measured internally in the surge tester does not exactly match the voltage at the device under test. The reason for this is that unavoidable line inductances and capacitances between the test leads can change the voltage curve of the surge signal on the path to the device under test. This occurs more intensively the steeper the surge pulse rises.


In order to precisely measure the actual partial discharge inception voltage applied to the motor terminal board during a partial discharge test, for example, measurement via the VoltageAnalyzer directly at the terminal board is required.

In order to inspect a three-phase motor or stator quickly and without the need to reconnect any terminals, the VoltageAnalyzer is equipped with three measurement connections. These are connected directly to the terminals U, V and W of the device under test via the shortest possible measurement leads. The measuring point switch-over between the three measurement connections is fully automatic within the VoltageAnalyzer and synchronous with the surge voltage test.




Voltage signals measured with the VoltageAnalyzer • measured directly at the motor terminals precise overshoot measurement

• accurate peak and peak-to-peak voltage measurement

for all three phases

Voltage signals measured without VoltageAnalyzer. • signal waveform is not measured at the motor terminals • high damping of the overshoot signal

Input for passive and active partial discharge measurement antenna

Armature booster

Optional extension

For armature testing, an additional armature booster is available for the MTC2 R7 test devices. It is needed for testing larger, lowinductance DC armatures. The armature booster increases the surge current by a factor of 10 to find short circuits and insulation faults between the bars.

The evaluation is performed fully automatically using the patented method made by SCHLEICH

The armature booster is connected to the measurement leads of the MTC2 R7. Two solid test probes with built-in start button are available for the operator at the output of the booster. In addition, a built-in warning light indicates whether the probes are voltage-free. An acoustic signal indicates whether the test is GO or NOGO.

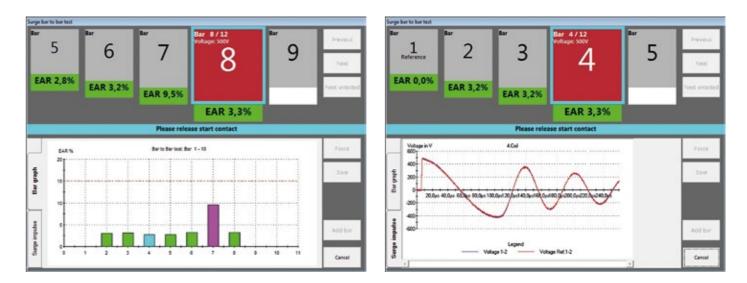
Booster Pack

6 kV 12 kV 15 kV
>2000 A possible
≤1500 V
no
yes
4023227

Collector test probes

Probes for armature test booster

4023403 Part number


Hand adapter armature contacting

Adjustable width | 2.5-22 mm 100-700 mm Collector diameter 4023373 Part number

The test is performed using two test probes with which the bars are contacted (bar method). The test can be performed directly between bar and bar or, for example, between 1⁄4 of the commutator. The test is started via the start button in the test probe.

The test is evaluated at the end of the fully automatic test sequence, which guides the operator through the measurement. Alternatively,

testing can also be performed manually, without a fixed test step sequence. With both methods, the MTC2 *R7* compares the surge curve with a previously stored reference during the measurement. This allows the user to directly fix any faults and repeat the test at these points.

The software concept

It's all about the device under test

The user interface has been completely redesigned and is based on the latest .NET technology. The MTC2 *R7* features modern and clear visualizations that enable intuitive operation.

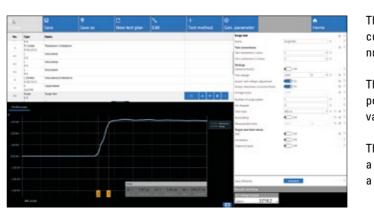
The DUT database provides an optimum insight into every device under test created. In addition to an overview of the individual assigned parameters such as manufacturer, serial number and type, all test results are displayed as well.

	÷	8	Ģ	+						A	
	Back	Save	Save as	New DUT						Home	
	DUTs Search and edit DUTs							DUT Identification	•		The software can be used to store any
	Search DUT		V					Prüfling/Art	Stator 3P Y 400V	5 X 5	number of devices under test/device under
Nith the full-text search, individual devices								Type Serial number	400V Motor EN478-43	× 5	test types. Further information can now be
under test/device under test types with all	Manufacturer	Туре	Serial number	Inventory nu	Application	Location	100000	Manufacturer	SCHLEICH	X to	assigned to these:
he information assigned to them can be ound quickly.	Menzel	MEBK315M-04-190 IE3	071640285145407001				132 kW	Application		× 5	Nameplate information
Junu quickiy.	VEM	IE4-W61R 280M 4 LL PT HW	420319/0001 HW				90 kW	Inventory number	[X S	Images of the nameplate or device
	ABB	awGy800xa45	AW 818 174				5000 kW	Beschreibung		× s	under test
		Stator EM235	185				0 W	Select type	type		Location information
								Location		5	 Logbook entries to document any kind of information
		Stator WP37 Abnahme	5		Versuche für Kunden		0 W	Select location	location		Test results
		EN7895	643ae-345		Gepäckband C2		0 MW	Nominal voltage	400	v •×5☆	
	ABB	AMK 500L4A 2MW	8010739	2164HF500			1.8 kW	Nominal current	165	A -×5☆	
	(+)	Stator Y 400V	3852-01				0 kW	Nominal power	90	k₩ • × 5 ☆	
	<u> </u>							Nominal speed	1487	× 5 H₂ × 5 ★	
	SCHLEICH	400V Motor	EN478-43				90 KW	Nominal frequency Power factor	0	X 5	
Test plans		0,0						Test plan assignment Assign test plan Create test Test plan	4 test test Description	12.5	
Test results								Stator Y 400V SCHLEICH_2	Description		
	NA GA	TAL						Stator Y 400V SCHLEICH_2			
Nameplate data								Stator 1 4004 SCHLERCH ₂ 2			
Location data									In this menu, several of be assigned to a devic test plans can be gen • One or more test pla	ce under test or new erated directly.	

> New, modern .NET software > Win10 operating system | Win11 ready > Storage of all signal sequences > Playback functionality

The software features

Playback functionality

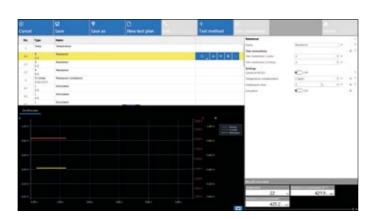

Tests that have already been carried out can be loaded 1:1 to enable further detailed evaluations, even if the test device is no longer connected to the device under test. All signal curves are saved for this purpose.

Example:

A partial discharge test involves a large number (hundreds) of pulses to determine the inception voltage, each pulse is saved with the corresponding partial discharge signal. The entire test sequence can thus be retraced and analysed again using the playback functionality.

				+ New DU						•		
/Ts		_						AVT (Inserting the				_
are analoged by its			_					-			14	
1000			7					in an and the second se	10.00		0.	
	bisister.	-	-	Autom	Institution		And in case	and the second second			14	
_		~	-	- Appropriate	Autory tan., sugar			Australia -			14.1	
	-					-		Contras partner			18	
-	Tradigine rame	(and the state of	-	- And	August	-		Training State			140	
	1010 Dec. (Mar	N.	71.0514		HOME F C			8.17m				
	2010/1001/1004	A.I.			WEEK'S	-		lower tage	-			
	Server Sumo Labor	4.	1.1.1.1.1.1.1		MARCH 1			Tax street				
	1010 (see, 1444)							Steel human	1.00			
								Same Income	10.00			
	2010 inter-Johns	AL.		1. Carlos 1.	MORE C.			Name and Address	a		54	
								Aurora Lance	×		1.	
								Aurorat press	A		12	
								Autorit grant				
								Third Monthly		24	14	
								Prost Sold			21	
								A				

Measurement function

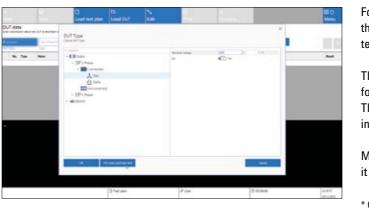


Setup mode

Test steps can be started at any time during the creation of the test plan. This enables the precise configuration of each test step.

Example:

The times for the ramp functions can be easily determined and transferred directly to the test step. Switching from test plan editing to test mode is a thing of the past.


User management

Custom "user roles" can be assigned for each operator in user management. These user roles can be used to assign user rights from a central control point, e.g. for administrators or users who are allowed to change set values or only perform predefined test sequences. Operators are required to log in with their password.

Thanks to the Windows 10 operating system, almost any kind of input is supported: From keyboard to screen input, scanner or RFID – everything is possible.

• 342 • 1679	Export Import		
the abreat she	Physical Print Planters		
ine .	200		
Parties .			
(and (from	Sector Servers	San di Amp	Contract data
	· · · ·	20000000000	Logisla cardina
	Ch have	10,000,004,00	10000100
	C 2 term	22/00/38/4	2010/2010/00/00
	(m) (m)	Transient reading and	Distance residence

Autotest

The full-text search

												•	
Dark test			New DUT									riger	
DUTS	(
		7											
ter.	in the second	insurance.		and a second		14103-1410		(area		140804		theme in the second sec	
The same	· -	i int		-		14.00		inner	- P.	Second school		Sector and	
													1
Noticed power	family and	Rambal Tes	ani) 1	ter bits	-	Public Law	-	when ins		Spendlar work		(Range	
Million													
	×.												
Manufactures	-	Sector/sector	Jacobie and	-		(anne	(and the	-	-	Buildy	-	Tarity.	(sear
-10	setuktion!	44.0174											
	States (Million	-											
	ters will strates			truck to be									
	0.001	100 m 142		Stationed C									
-	100.00.00	10070											
0	design and the	-											
C weeks	-	-											
	Sangler same description		-				_						-
	Date: 1 4800 10			100									
-	Dates 1 (881) (22)	adaptive .	100	C(4									
	(1994) 1 (1997) 1 (1)			eta 1.									
	Page 1 (000 10)			-									
	Dates 1 (607) (22)		100	C14									
	(mage 1 (1997) 101		-										

The oscilloscope feature is at its best. For each measurement, current, voltage and resistance curves are displayed not only as numerical values but also in the form of an oscillogram, if possible.

The "Measurement" function can be used to place cursors at any point in the diagram in order to determine amplitudes, resistance values and times in the selected range

This allows for very precise determination of a resistance value at a specific point in time. It is also easy to determine the rise time of a surge voltage.

For the automatic test plan creation, only data that can be taken from the type plate needs to be entered into the software as well as the test methods required for the test.

The MTC2 *R7* then automatically calculates the test target values for the test methods, taking into account the current standards. The calculation* is based on over 70 years of SCHLEICH experience in testing winding goods.

Making everyday testing easier. With SCHLEICH's know-how it is possible

* Calculation of the test voltage without guarantee!

All results can be found again quickly at any time using the information previously entered. The built-in full-text search feature simplifies and accelerates the retrieval of results.

The test protocol

All test results can either be exported directly after the test or at a later time using the modern standard protocol.

The protocol language can be selected individually before creating the protocol. Default languages include German, English, Chinese, Czech, Danish, Dutch, French, Hungarian, Italian, Polish, Portuguese, Slovenian, Spanish, Swedish.

Sample	Sample Company Ltd Sample Street 89 12345 Sample City					izable sec ny logo an		
PRÜFF	PROTOKOLL			L				
Profestienty		SCHUBCH MTC2 R7	_	L				
Seleman		1						
Kalbrierdatu		29.08.2022						
Problemen		Statur Y 400V SCHLEICH, 2						
Felder		0						
Prúfing D	NIT		_					
Typ		400/ Motor		_	il Ma		water -	
Selemann	w .	EN(78-43		B.	Michael Mills		treate	
Hersteller		SCHLECH			urge Compare	7	156	
Nenndrehzel	er (Ume)	1487			vige (PD		18 mV	
Leistungeheit	itter	0		-	sulation resistance		Au 380.	
Schulast		M			Stutenapannung		297 µA.	
teolationakia	1954	*						
Betriebsart		51			lung .			
Nennetrom		165 A			Bezeichnung	Profeedingung		Solitione
Nennielstung		90 KW			Temperature			Tempera 0 °C 1
Nennspanns	· ·	400 V		-	Ang			9.90-0
Webungsgra		87 %		254	Bezeichnung			BoliGre
Nennfrequer	nz .	50 Hz			Resistance	Temperature		Resider
Zusammer	Massung	20.000					27.575 %	67.5 mD
Typ	Profesterit	istwort	1000		Resistance	Temperature		Resistan
Temp	Temperature	17.4 °C	122				27.375 °C	\$7.5 mD
R	Resistance	75.667 mD			Resistance	Temperature		Resistan
я	Residence	75.971 mD				(and a second	27.575 °C	67.5 mD
8	Resistance	75.611 mQ		18	Resistance (Max. UN
Scatter R	Resistance Unitaliance	77.788 mQ		1	Unbalance			\$2%
	inductance	1209-mil						
	inductance	127 mil			Bezeichnung	Prüfbedingung		Solition
	inductance	1204 min			Inductionce			Induction 1,216 mil
h								Impedan
Manager 197	Inductance Unbalance	1,284,694	-					
			- 22		Inductarios			Induction 1,216 ml
c	Capacitance	1.265 #		1.1				
C Surge	Surge	13%		E				
C Surge		13% 14%	8					Impedan
C Surge Surge	Surge	13%			Inductance			Impedan
C Surge Surge Surge	Surge Surge Durge	13% 14%	8		inductance			Impedant Inductant 1,218 mi
C Burge Burge Burge	Surge Surge Durge	13% 14%	5	5	Induction of			Impedant Inductant 1,216 m
Boatter L C Surge Surge Surge	Surge Surge Durge	13% 14%	8	55	Inductance Inductance Baseschmang	Pathedingung		Impedant Induction I 218 no Impedant

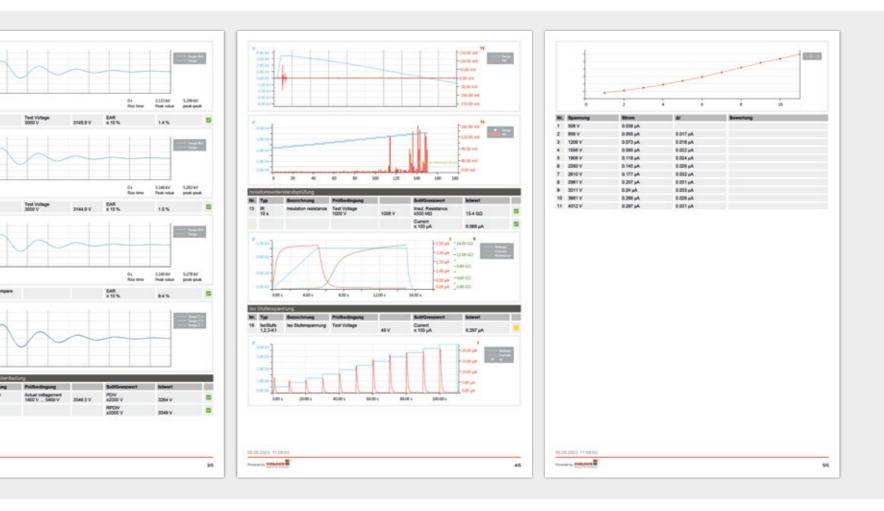
The title page with customizable section, the general data of the device under test and the overview of the measurement results. On the following pages, the detailed measurement results of the individual test steps are depicted.

0.000 Temperatur 0 1C 100 1C 1,216 mH Nr. Typ C Capacitance 4.61 of 5.72 of Nr. Typ 10 Surge 1-2 3133.3 V 05.55 2023, 11 09:03 25

Nr. Typ Becel

4 Surge TE

survey by brand over


Protocol options

• Paper printout

Any Windows[®] 10 compatible printer can be connected to the MTC2 R7. As is standard in Windows[®], only one click on the print icon is required and all test results are automatically printed.

• Generating a PDF file

The MTC2 R7 can generate a PDF file that can be stored on a USB drive, the internal hard disk or on any network directory. Storing on the USB drive is done automatically into the root directory. No "copy and paste" in Windows[®] is required.

• Creating a CSV file (optional)

Optionally, the MTC2 *R7* can also generate a CSV file after a test sequence. The file can be stored on any network directory. The data to be transferred to the CSV file are customizable and can be adapted to your requirements.

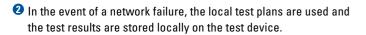
> Direct printing on a Windows[®] compatible printer > Creation of a PDF or CSV file > Reporting in accordance with IEC 61934

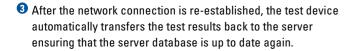
The MTC2 R7 in a network

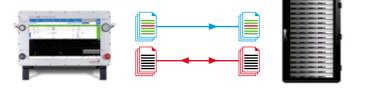
Test plans and test results can be stored locally or alternatively on a central server. This guarantees a high level of security for your data as well as optimized data sharing between different test systems.

The MTC2 *R7* is perfectly suited to operate in all network infrastructures, including its standard version. It offers the ideal platform for collecting, managing, analyzing and distributing information.

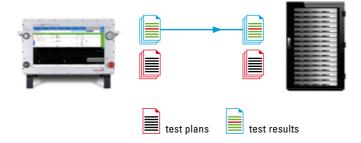
Tried and tested popular technologies from Microsoft[®] serve as the foundation for the database.



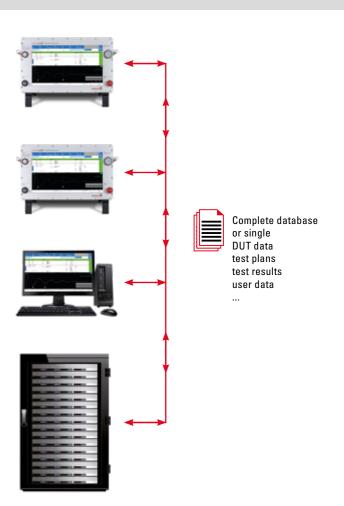



mongoDB

Network failure

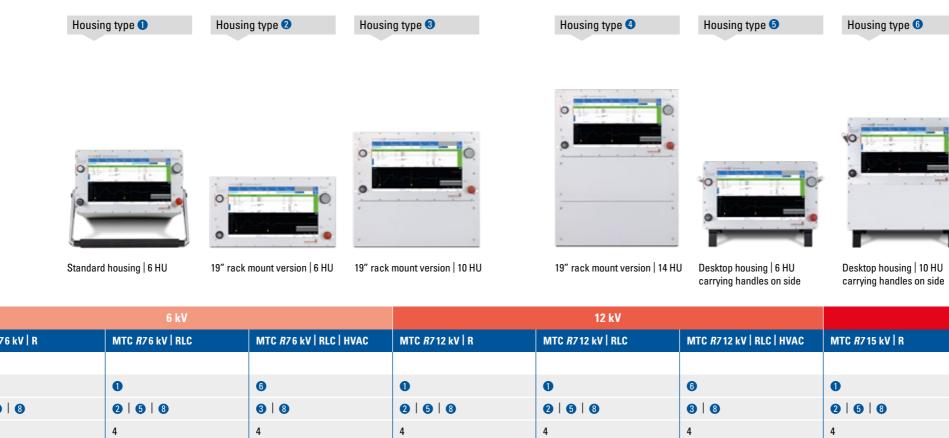

• Each test device automatically saves local copies of the latest server test plan database so that it can continue to operate in the event of an eventual network failure.

Import and export of test plans and user data


All device under test data, test plans, test results and user information can be efficiently synchronised across multiple test devices. The import and export of this data is particularly relevant in network operation.

Storage directories in the network as well as the hard drive of the PC in the test device or various types of removable storage media can be used for this purpose.

When importing or exporting user data, the defined authorizations of the individual users, the so-called "user roles", are also automatically included.


Test plan versions management also make it possible to check if test plans are up to date straight away. This ensures that all test devices in a network always have the latest data regarding test plans and authorized users, irrespective of their location. New test devices can be set up quickly and data be restored.

> Central storage of the test plans and results Local editing of test plans and evaluation of test results on the MTC2 *R7* or on workstations > Operation in global networks > Optimized for remote maintenance

Product overview

6 kV, 12 kV and 15 kV

		6 kV			12 kV		15 kV			
	MTC <i>R</i> 76 kV R	MTC <i>R</i> 76 kV RLC	MTC R76 kV RLC HVAC	MTC <i>R7</i> 12 kV R	MTC <i>R7</i> 12 kV RLC	MTC R7 12 kV RLC HVAC	MTC <i>R7</i> 15 kV R	MTC <i>R7</i> 15 kV RLC	MTC <i>R7</i> 15 kV RLC HVAC	
Standard housing type	0	0	6	0	0	6	0	0	6	
Optional housing type	2 5 8	2 5 8	8 8	2 5 8	2 5 8	8 8	0 5 8	0 5 8	3 8	
Winding connections	4	4	4	4	4	4	4	4	4	
4 additional winding connections	O Housing type 3 or 6	O Housing type 3 or 6	O Housing type 4 or 7	O Housing type 3 or 6	O Housing type 3 or 6	O Housing type 4 or 🕖	O Housing type 3 or 🚯	O Housing type 3 or 🚯	O Housing type ④ or 🥑	
Ground connection	1	1	1	1	1	1	1	1	1	
Surge voltage 100 nF	•	•	•	•	•	•	•	•	•	
Surge capacitance 200 nF	0	0	0	0	0	0	0	0	0	
Partial discharge with surge voltage	0	0	0	0	0	0	0	0	0	
Resistance	•	•	•	•	•	•	•	•	•	
Insulation resistance PI/DAR	•	•	•	•	•	•	•	•	•	
Step voltage	•	•	•	•	•	•	•	•	•	
High voltage DC	•	•	•	•	•	•	•	•	•	
High voltage AC 6 kV 100 mA	-	-	•	-	-	•	-	-	•	
Inductance	-	•	•	-	•	•	-	•	•	
Capacitance	-	•	•	-	•	•	-	•	•	
Sense of rotation	0	0	0	0	0	0	0	0	0	
Visual inspection	•	•	•	•	•	•	•	•	•	
External accessories										
Armature booster ready	•	•	•	•	•	•	•	•	•	
VoltageAnalyzer ready	•	•	•	•	•	•	•	•	•	

• Standard model

O Optional at extra costs

Not available

38

R: Resistance RLC: Resistance | Inductance | Capacitance HVAC: High voltage AC

Housing type 🕖

Desktop housing | 14 HU carrying handles on side

Housing type 8

Heavy-duty case

Product overview 25 kV, 30 kV, 40 kV and 50 kV

	2	25 kV		30 kV		D kV	5	0 kV
	MTC <i>R7</i> 25 kV SURGE	MTC <i>R7</i> 25 kV RLC	MTC <i>R7</i> 30 kV SURGE	MTC <i>R7</i> 30 kV RLC	MTC R7 40 kV SURGE	MTC <i>R7</i> 40 kV RLC	MTC R7 50 kV SURGE	MTC <i>R7</i> 50 kV RLC
Winding connections	2	2	2	2	2	2	2	2
3 rd Winding connection	0	0	0	0	0	0	0	0
Ground connection	1	1	1	1	1	1	1	1
Measuring connections pluggable	0	0	0	0	0	0	0	0
Surge voltage 100 nF	•	•	•	•	•	•	•	•
Surge capacitance 200 nF	-	-	-	-	-	-	-	-
Partial discharge with surge voltage	-	-	-	-	-	-	-	-
Resistance	0	•	0	•	0	•	0	•
Insulation resistance PI/DAR	•	•	•	•	•	•	•	•
Step voltage	•	•	•	•	•	•	•	•
High voltage DC	•	•	•	•	•	•	•	•
High voltage AC 6 kV 100 mA	-	-	-	-	-	-	-	-
Inductance	0	•	0	•	0	•	0	•
Capacitance	0	•	0	•	0	•	0	•
Sense of rotation	0	0	0	0	0	0	0	0
Visual inspection	•	•	•	•	•	•	•	•

Standard model

O Optional at extra costs

Not available

SURGE: Surge voltage RLC: Resistance | Inductance | Capacitance

Accessories

Kelvin clamp | sturdy design

Sturdy 4-wire Kelvin clamps for high-precision resistance tests. The standard measuring leads can be plugged on the Kelvin clamps.

Туре	small	medium	large
Opening width	10 mm/0.4 inch	20 mm/0.8 inch	33 mm/1.3 inch
Pressure intensity	20 N	30 N	100 N
4-wire-technology	yes	yes	yes
Measuring lead pluggable	yes	yes	yes
Dimensions (L x H x W)	90 x 35 x 13 mm/3.5 x 1.4 x 0.5 inch	165 x 41(65) x 20 mm/6.5 x 1.6(2.6) x 0.8 inch	255 x 95 x 25 mm/10 x 3.7 x 1 inch
Part number	4023184	4023122	4023109

Motor terminal plug

The motor terminal plugs enable quick contacting of 6-, 8- or 9-pole motor terminal boards. The individual types are designed to match the motor-side connection threads from M4 to M10. Different versions are available for each type due to the different distances between the threaded bolts.

The motor test plugs are available in three sizes.

You can find further information on our website: www.schleich.com/en/product/motor-terminal-plugs-en

Foot switch to start the test

Lead length	2 m/6.6 ft
Part number	4010611

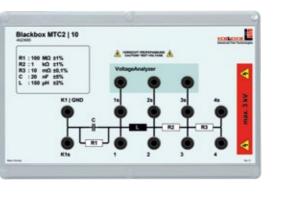
Warning and Result lights

The LED warning light indicates the following conditions: Green= high voltage switched off Red= high voltage switched on

Indications red/green
Lead length 1.8 m/5.9 ft
Part number 40004858

The LED result light indicates the following conditions: Green= test GO Red= test NOGO

	red/green
Lead length	1.8 m/5.9 ft
Part number	40004861



Rotary field probes

Two-hand start

Test dummy | Blackbox

Bl BI

Lead length	2 m	
Part number	4023716	
Lead length	2 m	
Part number	40106085	
		Part number
Static rotary field probe for microm		4007215 4007207
Static rotary field probe, medium ho Static rotary field probe, large hous	-	4000305
Static rotary neid probe, large nous	ing	4000505
Connection cables		Part number
4-pole, length 0.5 m		4000261
4-pole, length 1 m		40001929
4-pole, length 2 m		40002081
4-pole, length 3 m		40001930
4-pole, length 4 m		40003541

Daily verification of the test device using a black box to simulate "GO/NO GO" conditions gives you the safety of knowing that your test device is operating perfectly and that you are delivering products that have been tested properly. Our black boxes can be used as set value dummies or GO/NO GO test dummies.

Set value test dummy for simulation of tests

When the test device is checked with this black box, it measures the set value of the respective test method within a very tight ± tolerance. If the test result is out of the tolerance limits, a fault is present.

The GO/NO GO black box simulates tests with and without faulty conditions. For each test method a GO and NO GO test result is simulated.

	Part number
Blackbox MTC2 10	4023685
Blackbox for partial discharge test	40003448

ightarrow You can find our entire range of accessories on our website.

Accessories

Test cover model 13 R2

Test cover model 10

Overall dimensions (W x D x H)	620 x 782 x 515 mm
Inside dimensions (W x D x H)	458 x 600 x 350 mm
Integrated result lights	optional
Test voltage at surge test	max. 16 kV
Test voltage	max. 12 kV AC/16 kV DC
Safety	CAT IV
Part number 6 kV AC/8 kV DC	40003897
Part number 12 kV AC/16 kV DC	40004256

Overall dimensions (W x D x H)	9
Inside dimensions (W x D x H)	8
Integrated result lights	2
Test voltage	n
Safety	C
Part number	4

935 x 880 x 585 mm/36.8 x 34.7 x 23 inch
800 x 810/730 x 500 mm/31.5 x 34.2/28.7 x 23 inch
2 pcs. (1 x GO/ 1x NO GO)
max. 8 kV AC
CAT IV
400281

Rolling tables

Overall dimensions (Wx Dx H)	700 x 870 x 1010 mm	700 x 870 x 1010 mm
	27.6 x 34.2 x 39.8 inch	27.6 x 34.2 x 39.8 inch
Drawer	no	yes
Additional shelf	no	yes
Base plate	no	yes
Castors	yes	yes
Castor diameter	120 mm/4.7 inch	120 mm/4.7 inch
Push handle	yes	yes
Part number	124.982.0	124.981.0

 $\rangle\, \text{Note:}\,$ The rolling tables can also be customized according to your specifications.

Transport case

• Ideal for wind turbines, military,

on-site service in the field etc.

Interfaces and fieldbus

• Remote control of the tester via e.g. a PLC

• Read-out of test results

• Transfer of order data

The indicated logos are registered trademarks of the respective companies. \mid * optional

Connection extension to 8 winding connections

Model MTC2 R7	6 kV/12 kV/15 kV
Castors	yes
Shock absorber	yes
Color	black
Weight (tare)	20.5 kg/45,19 lbs
Dimensions (W x D x H)	700 x 850 x 450 mm/27.5 x 33.4 x 17.7 inch
Part number	4023116

	Part number
RS232	4023454
ProfiNet	4023656
EtherCAT	4023657
WLAN/Bluetooth	40004840

Test voltage	max. 15 kV
Surge current	max. 2000 A
4-wire-technology	yes
Part number	4023270

 \rightarrow You can find our entire range of accessories on our website.

Another word for "Made in Germany": **SCHLEICH**

Comprehensive production facilities allow designing and manufacturing almost all tester components at our site in Hemer.

For example, our measuring and electronic PCBs are produced with an ultra-modern in-line-SMD-placement system, which assures a stable quality of our products.

Modern high-end processors in our testers process the test tasks in a fast, precise and reliable manner. With our modern CNC-machines, we also design and manufacture a great number of accessory components such as test covers, contacting units, workpiece carriers with DUT-holders or robot gripping tools as well as complete automatic production lines.

Service without limits. We are there for you – wherever you are.

Service - we support you during the entire process. In training sessions adapted to your requirements, our technicians will teach you the necessary know-how allowing you to avail yourself of the functional variety of our testing devices to the full extent. Should there be questions or technical problems, our technical support team will assist you by phone, on-line or on-site fast and reliably. Constant software updates and extensions make sure that you can always work with state-of-the-art test software. The periodic calibration of test equipment is an essential precondition for quality assurance. We calibrate your test equipment according to standards - on site or via remote maintenance.

Sales and Service Centers

Whatever you want to test...SCHLEICH has the solution!

SCHLEICH is a leading system provider in the area of testing motors and windings. Our extensive range of products allows us to provide you with testers, test systems and complete production lines for almost every test task.

Decades of experience, listening to our customers and satisfying their wishes - facing individual tasks with technical creativity and realize them in a team of highly skilled engineers and designers – this is what we do. This is SCHLEICH.

Every single one of our more than 145 employees works on guaranteeing and optimizing the high quality standard of our testing devices each and every day. Our customers, our sales department, our motivated engineers and manufacturing staff - with their ideas and suggestions for improvement they are all part of the innovation process.

First-class customer service is our top priority. From detailed consulting during the planning phase to training and After-Sales-

It goes without saying that we calibrate in accordance with national and international standards. Our Service Centers support you around the world - with dedication, competence and reliability.

Production, Headquarters & Sales Center Germany

Sales and Service Centers

Expect more!

Whatever you want to test, SCHLEICH has the solution! As a leading supplier of electric safety and function test systems as well as motor and winding testers we offer solutions for any task in this sector. Our owner-managed company, founded more than 70 years ago, is present in over 40 markets all around the globe.

Test devices for electric motors and windings

MotorAnalyzer3 Universal tester for electric motors and windings

MTC3 Multi-purpose winding testers for motor production

MTC2 *R*7 Multi-purpose winding testers

VoltageAnalyzer Accurate surge measurement directly at the winding


Thermal-bonding machines, impregnation & resistiveheating systems

EncoderAnalyzer For testing encoders

Dynamic-MotorAnalyzer Online Monitoring of electric motors

Test covers, test cabins and protection devices Personal protection against dangerous test voltages

Handheld Mobile multi-purpose testers

GLP3-M

Multi-purpose motor testers

GLP1-g Safety, function and high-voltage testers

GLP2-BASIC Safety, function and high-voltage testers

GLP3

Multi-purpose Windows®-testers

GLP2-MODULAR Safety, function and high-voltage testers

Presented by:

SCHLEICH GmbH An der Schleuse 11 58675 Hemer | Germany Phone +49 (0) 2372 9498-9498 Fax +49 (0) 2372 9498-99 info@schleich.com www.schleich.com

